
Chicago Interface Group, Inc.

Cloud 9 for Endevor
Administration Guide

V 12.0

Chicago Interface Group, Inc
858 West Armitage Avenue #286
Chicago, IL 60614 USA

Phone: (773) 524-0998
Fax: (773) 525-6098
Email: support@cigi.net
Web: www.cigi.net

Cloud 9 version 12.0

Cloud 9 is a trademark of Chicago Interface Group, Inc.
CA-Endevor is a registered trademark of Computer Associates International, Inc.

All rights reserved.  Copyright by Chicago Interface Group, Inc. 2008.

Documentation Version January 17, 2008

CONTENTS

Chapter 1: Getting Started ... 5

Introduction .. 5
Who should use this manual? .. 5
How to use this manual? ... 5

Seeing the Big Picture .. 6
Required Tasks for all Cross Platform Applications 6
Optional Tasks for a Cross Platform Application: .. 7

CHAPTER 2: STANDARD CROSS PLATFORM SETUP 9

Step 1: Define File Types to Endevor ... 9
Endevor Base File Requirements: ... 9
Endevor Delta File Requirements: .. 10
Required Endevor Type Attributes Example: ... 10

Step 2: Define the Type to SLR .. 10

Step 3: Add Type Extension to the OS/390 HTTP Rules File (httpd.conf) . 12

Step 4: Update YOUR Browser’s File Type Settings 14
Internet Explorer MIME Setup: .. 14

CHAPTER 3: THE SLR UTILITY 17

Chapter Scope .. 17

Long 6ame Support ... 17

The JCL for C9LSLR .. 18

The Utility – C9LSLR .. 19

The Syntax for Defining Types to the SLR .. 19
Example of SLR Definition Syntax: ... 20

The Syntax for Adding, Deleting, and Listing Entries in the SLR 20
Short �ame Syntax: ... 20
Example of SLR Short �ame Syntax: .. 21
List Short �ame CIGPU�CH Example: ... 21
Long �ame Syntax: ... 21

Example of SLR Long �ame Syntax: ... 22
List Long �ame CIGPU�CH Example: .. 22

SLR in Endevor Processors ... 23

Using C9LSLR with Endevor ... 23

CHAPTER 4: EXITS, HTTPD SECURITY ISSUES, AND
CUSTOMIZATIONS ... 24

CLZREX00 – Cloud 9 Temporary Dataset Prefix Setting 24
CLZREXIT – C1UXSITE Support ... 25
Alternate ADDTYPE Definitions Location .. 26
LSERV SUPPORT ... 28

APPENDIX A - TYPE DEFINITION WORKSHEET 29

APPENDIX B - APPLICATION LIFE CYCLE
WORKSHEET 30

Application Life Cycle Requirements ... 30

APPENDIX C - FTP DEPLOYMENT WORKSHEET 31

Chapter 1: Getting Started

Introduction

Who should use this manual?

The audience for this manual is technicians and administrators
responsible for the configuration of Cloud 9 and Breeze. It
assumes basic knowledge of HTTP server concepts, knowledge of
Endevor and a general knowledge of browser setup features. In
short, there may not be one person at a customer site that knows all
of these things. So this manual is meant as a starting point or
perhaps a joining point for these various technical issues.

How to use this manual?

This manual outlines some common aspects of using Cloud 9 to
manage cross platform objects. There is an introduction section,
information on long names, specifics on setting up cross platform
objects, Ftp-based deployment and remote builds, and the Cloud 9
S-JDK prototype translator. Use this manual to get started in the
planning and configuration process of Cloud 9.

Seeing the Big Picture

Before taking steps to implement a complex, cross platform
application using Cloud 9, it would be helpful to take a step
backwards and break the process up into smaller buckets.
Break up the process into three buckets; 1) the issues that
will be the same and required for all applications; 2) the
issues that are unique per application; and 3) the unknowns
that will have to be sorted out when we get there.

As an exercise moving forward you should look at each
application from this perspective. What is the fixed,
known, absolutely required work for each application, then
what additional scripts and functionality can be customized
for the application, and thirdly, what additional things
could the end user ask for potentially.

Required Tasks for all Cross Platform Applications

Starting with the standard issues that will be required for
each application:

1. Like any SCM implementation, if this is a new

application to change management you will need to
define the types and attributes of each type. For
instance, Visual Basic files such as .FMX or .FMT will
need an Endevor type associated with them on the host.
See Appendix A for an example of a Type Definition
Worksheet

2. Once the types are identified for the application, per
type, what kind of control is needed for the object?
Version control only, deployment of object to servers, a
remote build requirement? Again see Appendix B for
an example of an FTP worksheet and Appendix C for
the Application Life Cycle Requirements Worksheet.

3. Next, you would build the Endevor Types and allocate
the files as per CIG’s recommendations. It is highly
recommended that you use a batch job for this purpose.

4. Define the types to the SLR. See Chapter 3 on more
about the SLR long name utility.

5. Define the types to your workstations and HTTP server.
Essentially, your workstation needs to know how to
handle a file extension when it is delivered from a
browser. Much like your email interface reacts to an

attachment, the Cloud 9 browser interface needs to
know the application associated with the file extension.
The HTTP server needs to know this as well. Most
common file extensions are already defined to your
workstation and to the HTTP server. Please see chapter
2, Managing Cross System Applications for more on
this issue.

Optional Tasks for a Cross Platform Application:

This is where the fun really begins. Having worked through the
Type and Process Matrixes, there should be an idea of your success
criteria. What are you hoping to accomplish with this application?
Here are some of the questions to ask:

1. Do you need a processor to deploy an executable or
html file outside of Endevor? Can you accomplish
what you need by implementing and customizing the
FTP processors included in the SCM Suite? See
Chapter 4 for more information on the E-FTP
processors.

2. Will you be compiling Java on the host using USS? Do

you want absolute correlation between source and
executable, much like standard Endevor component list
relationships? Please review Chapter 5 for more
information on the Java/USS processors.

3. Do you want to do remote builds? What does this

really mean? Typically the problem is that production
control minimally wants to lock down production and
would like to, if possible to force the creation of the
executable from the source saved in the host repository.
This can be accomplished after researching the source
type and how it is compiled today. This area will
always need customization and possibly some research.
The Suite provides a E-FTP processor that shows a
simple C++ make file being sent to a remote box for
execution. Most remote builds will require REXX
script customization. Also note that not all IDE
applications have a batch or command line interface for
requesting builds. You will need to understand the
nature of the IDE to determine if it is eligible for

remote build processing. Endevor processorsf that can
manage and deploy cross platform objects is discussed
later in this document.

Chapter 2: Standard
Cross Platform Setup

Regardless of which cross platform applications you chose to
support with the SCM Suite, there are four basic steps that must be
performed before the application can be supported. Two of the
steps are standard z/OS batch jobs, one is an potential update to the
HTTP server files, and finally, the last is an update to your actual
workstation. Review this section for the simple steps to setting up
a cross platform application.

Step 1: Define File Types to Endevor

1. Determine the type name. We recommend that you name
the type the same as the file extension. For instance, .DOC

types should be defined as DOC, .JAVA types should be
defined as JAVA, etc. See appendix A for a sample type
definition work sheet.

2. Define the Endevor Base and Delta files per Cloud 9

requirements.

Note that you may need to create separate base and delta files to
manage the cross platform, long record and long name type files.
The figure below shows the recommended attributes of the base
and delta files. If your current base and delta files do not meet
these requirements, you will need to allocate base and delta files
for the new cross platform types that meet these needs.

Endevor Base File Requirements:

REVERSE
LRECL=512
BLKSIZE=23478
RECFM=VB

Endevor Delta File Requirements:

REVERSE
LRECL=23400
BLKSIZE=23478
RECFM=VB

3. Define the type to Endevor using Batch Admin. The
following is an example of the required type attributes for
cross platform types. Due to the undefined and variable
lengths of the most non z/OS files, the lengths are generally
longer than host files. Also, these attributes are designed to
work with the base and delta files as defined in this section.

Required Endevor Type Attributes Example:

*
 * TYPE = DOC WORD FOR WINDOWS FILES
 *
 DEFINE TYPE DOC
 TO ENVIRONMENT TEST
 SYSTEM CIG
 STAGE NUMBER 1
 DESCRIPTION "DMV WORD FOR WINDOWS"
 SOURCE ELEMENT LENGTH 500
 COMPARE COLUMN 1 TO 500
 LANGUAGE TEXT
 DEFAULT PROCESSOR GROUP IS '*NOPROC*'
 BASE LIBRARY 'CLOUD9.EBASE1.REVERSE'
 DELTA LIBRARY 'CLOUD9.EDELTA1.REVERSE'
 DO NOT COMPRESS BASE
 ELEMENT DELTA FORMAT IS REVERSE
 .

 Example of Endevor Batch SCL for non-OS/390 Type

Step 2: Define the Type to SLR

Run the SLR update utility to define the type to the SLR. The
figure below shows an example of how to list the current types and
how to define a new type. For more in-depth syntax and usage of
the SLR utility, please see Chapter 3, of this manual.

Note there is no harm in re-defining and already existing type.

//**(JOBCARD)
//**
//**
//* *
//* CIGV2IVP - THE PURPOSE OF THIS JCL IS TO RUN THE SLR IVP. *
//* STEP 1 WILL PRINT THE CIGINI DEFINITIONS. *
//* STEP 2 WILL LIST IVP SLR RULE DEFINITIONS. *
//* STEP 3 WILL ADD ENDEVOR *
//* TYPE DEFINITIONS AND THEN LIST ALL RULES *
//* IN THE DATABASE. *
//* NOTE: - SEE THE CLOUD 9 V7.0 PLANNING AND ADMINISTRATION GUIDE *
//* FOR MORE INFORMATION ON LONGNAME SETUP AND USAGE. *
//* NOTE: - THE SYNTAX PROVIDED IS FOR AN EXAMPLE ONLY. *
//* IT IS RECOMMENDED THAT STEP3 SYNTAX BE TAILORED TO *
//* ACTUAL LOCAL VALUES. *
//**
//* *
//* REQUIRED JCL MODIFICATION: *
//* 1) INCLUDE A JOBCARD *
//* 2) CHANGE THE FOLLOWING AS PER THE INSTALLATION WORKSHEET. *
//* - FLHQ1 AND FLHQ2 *
//* *
//**
//* *
//* STEP 1: PRINT THE CIGINI DEFINITIONS. *
//* *
//**
//STEP1 EXEC PGM=PRINTINI
//STEPLIB DD DSN=FLHQ1.FLHQ2.LOADLIB,DISP=SHR
//CIGPRINT DD SYSOUT=*
//**
//* *
//* STEP 2: LIST THE CURRENT CONTENTS OF THE SLR DATABASE *
//* *
//**
//STEP2 EXEC PGM=C9LSLR
//STEPLIB DD DSN=FLHQ1.FLHQ2.LOADLIB,DISP=SHR
//CIGPUNCH DD SYSOUT=*
//CIGLOG DD SYSOUT=*
//CIGIN DD *
 LIST NAME RULES.
/*
//**
//* *
//* STEP 3: ADD DATASET AND TYPE DEFINITIONS TO SLR DATABASE. *
//* USE AS IS OR TAILOR WITH LOCAL VALUES. *
//* *
//**
//STEP3 EXEC PGM=C9LSLR
//STEPLIB DD DSN=FLHQ1.FLHQ2.LOADLIB,DISP=SHR
//CIGPUNCH DD SYSOUT=*
//CIGLOG DD SYSOUT=*
//CIGIN DD *
 ADD NAME RULE FOR ENDEVOR TYPE HTML CASE SENSITIVE.
 ADD NAME RULE FOR ENDEVOR TYPE JAVA CASE SENSITIVE.
 ADD NAME RULE FOR ENDEVOR TYPE UNIXMAKE CASE SENSITIVE .
 ADD NAME RULE FOR ENDEVOR TYPE DOC CASE INSENSITIVE .
 LIST NAME RULES.
/*

 CIGV2IVP

Step 3: Add Type Extension to the
OS/390 HTTP Rules File (httpd.conf)

Check the httpd.conf file to see if the file extension you’re adding
is already there. The following is the ADDTYPE table delivered
with the Cloud 9 version of the httpd.conf, which can be found in
the “rootdir” of the Cloud 9 USS directories.

#--
-

#Non-standard MIME types declared here. (User style MIME types)

#--
-
AddType .asm text/asm ebcdic 1.0 # Assemble Macros
AddType .doc binary/doc binary 1.0 # Microsoft Word
Documents
AddType .ppt binary/ppt binary 1.0 # Power Point Documents
AddType .cob text/cobol ebcdic 1.0 # COBOL Source Code
AddType .cbl text/cobol ebcdic 1.0 # COBOL Source Code
AddType .cobol text/cobol ebcdic 1.0 # COBOL Source Code
#--
--

AddType .cer application/x-x509-user-cert ebcdic 0.5 # Browser Certificate
AddType .der application/x-x509-ca-cert binary 1.0 # CA Certificate
AddType .mime www/mime binary 1.0 # Internal -- MIME is
AddType .bin application/octet-stream binary 1.0 # Uninterpreted binary
AddType .class application/octet-stream binary 1.0 # Java applet or
application
AddType .pdf application/pdf binary 1.0
AddType .ai application/postscript ebcdic 0.5 # Adobe Illustrator
AddType .PS application/postscript ebcdic 0.8 # PostScript
AddType .eps application/postscript ebcdic 0.8
AddType .ps application/postscript ebcdic 0.8
AddType .rtf application/x-rtf ebcdic 1.0 # RTF
AddType .csh application/x-csh ebcdic 0.5 # C-shell script
AddType .latex application/x-latex ebcdic 1.0 # LaTeX source
AddType .cdf application/x-cdf ebcdic 1.0 # Channel Definition
Format
AddType .sh application/x-sh ebcdic 0.5 # Shell-script
AddType .tcl application/x-tcl ebcdic 0.5 # TCL-script
AddType .tex application/x-tex ebcdic 1.0 # TeX source
AddType .t application/x-troff ebcdic 0.5 # Troff
AddType .roff application/x-troff ebcdic 0.5
AddType .tr application/x-troff ebcdic 0.5
AddType .man application/x-troff-man ebcdic 0.5 # Troff with man macros
AddType .me application/x-troff-me ebcdic 0.5 # Troff with me macros
AddType .ms application/x-troff-ms ebcdic 0.5 # Troff with ms macros
AddType .gtar application/x-gtar binary 1.0 # Gnu tar
AddType .shar application/x-shar ebcdic 1.0 # Shell archive
AddType .wrl x-world/x-vrml binary 1.0 # VRML
AddType .snd audio/basic binary 1.0 # Audio
AddType .au audio/basic binary 1.0
AddType .aiff audio/x-aiff binary 1.0
AddType .aifc audio/x-aiff binary 1.0
AddType .aif audio/x-aiff binary 1.0
AddType .wav audio/x-wav binary 1.0 # Windows+ WAVE format
AddType .bmp image/bmp binary 1.0 # OS/2 bitmap format
AddType .gif image/gif binary 1.0 # GIF
AddType .ief image/ief binary 1.0 # Image Exchange fmt
AddType .jpg image/jpeg binary 1.0 # JPEG
AddType .JPG image/jpeg binary 1.0

AddType .JPE image/jpeg binary 1.0
AddType .jpe image/jpeg binary 1.0
AddType .JPEG image/jpeg binary 1.0
AddType .jpeg image/jpeg binary 1.0
AddType .tif image/tiff binary 1.0 # TIFF
AddType .tiff image/tiff binary 1.0
AddType .ras image/cmu-raster binary 1.0
AddType .pnm image/x-portable-anymap binary 1.0 # PBM Anymap format
AddType .pbm image/x-portable-bitmap binary 1.0 # PBM Bitmap format
AddType .pgm image/x-portable-graymap binary 1.0 # PBM Graymap format
AddType .ppm image/x-portable-pixmap binary 1.0 # PBM Pixmap format
AddType .rgb image/x-rgb binary 1.0
AddType .xbm image/x-xbitmap ebcdic 1.0 # X bitmap
AddType .xpm image/x-xpixmap binary 1.0 # X pixmap format
AddType .xwd image/x-xwindowdump binary 1.0 # X window dump (xwd)
AddType .html text/html ebcdic 1.0 # HTML
AddType .htm text/html ebcdic 1.0 # HTML on PCs
AddType .htmls text/x-ssi-html ebcdic 1.0 # Server-side includes
AddType .shtml text/x-ssi-html ebcdic 1.0 # Server-side includes
AddType .c text/plain ebcdic 0.5 # C source
AddType .h text/plain ebcdic 0.5 # C headers
AddType .C text/plain ebcdic 0.5 # C++ source
AddType .cc text/plain ebcdic 0.5 # C++ source
AddType .hh text/plain ebcdic 0.5 # C++ headers
AddType .java text/plain ebcdic 0.5 # Java source
AddType .js text/plain ebcdic 0.5 # JavaScript source
AddType .m text/plain ebcdic 0.5 # Objective-C source
AddType .f90 text/plain ebcdic 0.5 # Fortran 90 source
AddType .txt text/plain ebcdic 0.5 # Plain text
AddType .bat text/plain ebcdic 0.5 # Plain text
AddType .css text/css 8bit 1.0 # W3C Cascading Style
Sheets
AddType .rtx text/richtext ebcdic 1.0 # MIME Richtext format
AddType .tsv text/tab-separated-values ebcdic 1.0 # Tab-separated values
AddType .etx text/x-setext ebcdic 0.9 # Struct Enchanced Txt
AddType .MPG video/mpeg binary 1.0 # MPEG
AddType .mpg video/mpeg binary 1.0
AddType .MPE video/mpeg binary 1.0
AddType .mpe video/mpeg binary 1.0
AddType .MPEG video/mpeg binary 1.0
AddType .mpeg video/mpeg binary 1.0
AddType .qt video/quicktime binary 1.0 # QuickTime
AddType .mov video/quicktime binary 1.0
AddType .avi video/x-msvideo binary 1.0 # MS Video for Windows
AddType .movie video/x-sgi-movie binary 1.0 # SGI moviepalyer
AddType .zip multipart/x-zip binary 1.0 # PKZIP
AddType .tar multipart/x-tar binary 1.0 # 4.3BSD tar
AddType .ustar multipart/x-ustar binary 1.0 # POSIX tar
AddType *.* www/unknown binary 0.2 # Try to guess
AddType * www/unknown binary 0.2 # Try to guess
AddType .cxx text/plain ebcdic 0.5 # C++
AddType .for text/plain ebcdic 0.5 # Fortran
AddType .mar text/plain ebcdic 0.5 # MACRO
AddType .log text/plain ebcdic 0.5 # logfiles
AddType .com text/plain ebcdic 0.5 # scripts
AddType .sdml text/plain ebcdic 0.5 # SDML
AddType .list text/plain ebcdic 0.5 # listfiles
AddType .lst text/plain ebcdic 0.5 # listfiles
AddType .def text/plain ebcdic 0.5 # definition files
AddType .conf text/plain ebcdic 0.5 # definition files
AddType . text/plain ebcdic 0.5 # files with no
extension
AddType .JP932 text/x-DBCS binary 1.0 IBM-932 # Japanese DBCS
AddType .JPeuc text/x-DBCS binary 1.0 IBMeucJP # Japanese DBCS

 Example of ADDTYPE Entries

If the file type your adding is not there, then add it using the following format:

AddType / Extension / Mime type / Translation Technique MIME Definition
Format

For example if adding an MS-Excel file type, the following format would be used:

AddType .xls application / msexcel binary

Step 4: Update YOUR Browser’s File
Type Settings

Internet Explorer MIME Setup:

On Windows, go to Start / Settings / Folder Options / File Types.

1. Check the list of file types for the file type you will be
downloading. If the file type you’re looking for is there,
then the application currently set to open the file will be
displayed. If the file type is there, but set to the wrong
application, then select Edit.

2. On the Edit screen you can specify what application is
chosen to open the file. Also, the “Confirm open after
download” option gives you the choice of whether or not a
prompt will occur after a download.

3. If the file type your looking for is not in the file list then

click the “New Type” button from the Folder Options
screen

4. This screen allows you to add a file type to the file list and
choose a default application to open the file with. Once the
file type has been edited or added, the httpd.conf file
should be checked to make sure that all the ADDTYPE

definitions match.

Netscape MIME Setup:

 In Netscape, go to Edit / Preferences / Navigator / Application

1. Check the list of file types for the file type you will be
downloading. If the file type you are looking for is there, then the
application currently set to open the file will be displayed.

2. Ensure that the correct application is set up to open your file. If
it is not set to the right application then select “Edit”.

3. If the file type you are looking for is not in the list of file types,
then select “New Type”. This screen allows you to add a file type
to the file list and choose a default application to open the file with.

4. Once the file type has been edited or added, the httpd.conf file
should be checked to make sure that all the ADDTYPE definitions
match.

5. In Netscape, any file without an extension is given a default
extension of .TXT. To change this default extension, you must
change the “Handled by” option for the file types with the
description, “plain text”.

Chapter 3: The SLR
Utility

Chapter Scope

This chapter deals with managing cross-platform objects. It
explains:

- How long name support works
- The SLR database
- How to define types to Endevor
- Optimizing your browser settings
- Managing Cross Platform Packages with Breeze

Long Name Support

A key component of Cloud 9 is long name support, required when
moving, viewing and referencing objects from one platform to
another.

The premise behind long name support is that each customer will
selectively decide which SCM types are monitored and managed
by Cloud 9. Given that an Endevor based z/OS system will have
both standard host based and cross platform objects managed side
by side, there needs to be a method to signal the Cloud 9 to take
control. This method is the SLR (short-to-long name registry).

The SLR database contains both long name rules and actual data.
This is the file where the correlation between the distributed
platform object name and the standard z/OS eight character name
is maintained. It is referenced in the CIGINI file, in the CLOUD 9
Section. The SLR is a standard KSDS VSAM file that will need to
be maintained as all VSAM files need to be maintained.

The JCL for C9LSLR

The following is the JCL used to define the SLR long name rules
to the SCM Suite. It can be found in the Cloud 9 JCLLIB
offloaded from the installation tape.

//**(JOBCARD)
//**
//**
//* *
//* CIGV2IVP - THE PURPOSE OF THIS JCL IS TO RUN THE SLR IVP. *
//* STEP 1 WILL PRINT THE CIGINI DEFINITIONS. *
//* STEP 2 WILL LIST IVP SLR RULE DEFINITIONS. *
//* STEP 3 WILL ADD ENDEVOR *
//* TYPE DEFINITIONS AND THEN LIST ALL RULES *
//* IN THE DATABASE. *
//* NOTE: - SEE THE CLOUD 9 V7.0 PLANNING AND ADMINISTRATION GUIDE *
//* FOR MORE INFORMATION ON LONGNAME SETUP AND USAGE. *
//* NOTE: - THE SYNTAX PROVIDED IS FOR AN EXAMPLE ONLY. *
//* IT IS RECOMMENDED THAT STEP3 SYNTAX BE TAILORED TO *
//* ACTUAL LOCAL VALUES. *
//**
//* *
//* REQUIRED JCL MODIFICATION: *
//* 1) INCLUDE A JOBCARD *
//* 2) CHANGE THE FOLLOWING AS PER THE INSTALLATION WORKSHEET. *
//* - FLHQ1 AND FLHQ2 *
//* *
//**
//* *
//* STEP 1: PRINT THE CIGINI DEFINITIONS. *
//* *
//**
//STEP1 EXEC PGM=PRINTINI
//STEPLIB DD DSN=FLHQ1.FLHQ2.LOADLIB,DISP=SHR
//CIGPRINT DD SYSOUT=*
//**
//* *
//* STEP 2: LIST THE CURRENT CONTENTS OF THE SLR DATABASE *
//* *
//**
//STEP2 EXEC PGM=C9LSLR
//STEPLIB DD DSN=FLHQ1.FLHQ2.LOADLIB,DISP=SHR
//CIGPUNCH DD SYSOUT=*
//CIGLOG DD SYSOUT=*
//CIGIN DD *
 LIST NAME RULES.
/*
//**
//* *
//* STEP 3: ADD DATASET AND TYPE DEFINITIONS TO SLR DATABASE. *
//* USE AS IS OR TAILOR WITH LOCAL VALUES. *
//* *
//**
//STEP3 EXEC PGM=C9LSLR
//STEPLIB DD DSN=FLHQ1.FLHQ2.LOADLIB,DISP=SHR
//CIGPUNCH DD SYSOUT=*
//CIGLOG DD SYSOUT=*
//CIGIN DD *
 ADD NAME RULE FOR ENDEVOR TYPE HTML CASE SENSITIVE.
 ADD NAME RULE FOR ENDEVOR TYPE JAVA CASE SENSITIVE.
 ADD NAME RULE FOR ENDEVOR TYPE UNIXMAKE CASE SENSITIVE .
 ADD NAME RULE FOR ENDEVOR TYPE DOC CASE INSENSITIVE .
 LIST NAME RULES.
/*

SCM SUITE Utility C9LSLR

The Utility – C9LSLR

The utility program C9LSLR is used for the following three
functions, depending on which syntax is used as input:

1. Add/Delete/List Type definitions for Endevor.
2. Add/Delete/List a Short Name based on a given Long Name.
3. Add/Delete/List a Long Name based on a given Short Name.

The Syntax for Defining Types to the
SLR

The following is the syntax used to for defining types and their
attributes to the SLR. This task would be done during initial setup
and installation. It is these rules that determine if the SCM Suite
will monitor the transaction for the distributed object type.

ADD NAME RULE FOR ENDEVOR TYPE ‘HostSCM-type’
case sensitive|case insensitive .

SLR Long �ame Rule Syntax for Endevor

Keyword Description 6otes

ADD|DELETE|LIST
NAME RULE FOR
ENDEVOR TYPE
HostSCM-type

These keywords and
variable are
required. The
variable is a 1-8
character HostSCM-
type that represents
a distributed object
type.

Required.

Case sensitive|
Case insensitive

This is an optional
keyword that
controls the
representation of the
distributed object
name storage.
Usage of this parm

Default is case
insensitive.
Ignored for the
Delete and List
verbs.

should reflect the
platform case
sensitivity
requirements. For
instance, Unix and
Linux is case
sensitive, where as
Windows files are
not.

 SLR Long �ame Rules Parameter Description

Example of SLR Definition Syntax:

ADD NAME RULE FOR ENDEVOR TYPE XLS .
ADD NAME RULE FOR ENDEVOR TYPE UNIXMAKE CASE
SENSITIVE .
ADD NAME RULE FOR ENDEVOR TYPE DOC CASE
INSENSITIVE .

 SLR Definition Rule Syntax Example

The Syntax for Adding, Deleting, and
Listing Entries in the SLR

The following is the syntax used for creating, deleting or listing
entries in the SLR. This task would be done during processor /
translator execution or during any other utility that the customer
implements.

Short Name Syntax:

ADD|DELETE|LIST SHORT NAME WHERE LONGNAME =
‘long-name’
ENDEVOR TYPE ‘Endevor-type’
 .

SLR Short �ame Entry Syntax

Keyword Description 6otes

ADD|DELETE|LIST
SHORT NAME
WHERE LONG
NAME =
‘long-name’

These keywords and
variable are
required. The
variable is a 1-255
character long name
that will be
translated into a

The long name entry
must exist for the
DELETE and either
case can be true for
the LIST function.

Wildcarding is not

short name for the
ADD.

allowed.

ENDEVOR TYPE
‘Endevor-type’

This keyword
further defines the
attributes of the
names.

One of these
keywords are
required for the
ADD and DELETE
verbs but are
optional for the
LIST verb.

SLR Short �ame Rules Parameter Description

Example of SLR Short Name Syntax:

The following is an example of Endevor based rule definitions.

ADD SHORT NAME WHERE LONGNAME = 'Fiscal Year End 2000 Spread
Sheets.xls’
 Endevor type xls .
ADD SHORT NAME WHERE LONGNAME = ‘OurHomePage.HTML’
 Endevor type html .

SLR Short �ame Syntax Example

List Short Name CIGPUNCH Example:

The following figure is an example of the output generated by the
LIST Short Name Request. The short name appears first with an
asterisk in column 1.

* HEL00001
LIST SHORTNAME WHERE LONGNAME =
 HELLO STEVE

List Long �ame Output

Long Name Syntax:

 LIST LONG NAME WHERE SHORTNAME = ‘short-name’.
SLR Long �ame Entry Syntax

Keyword Description 6otes

 LIST
LONG NAME
WHERE SHORT
NAME =
‘short-name’

These keywords and
variable are
required. The
variable is a 1-8
character short
name.

Wildcarding is not
allowed.

SLR Long �ame Rules Parameter Description

Example of SLR Long Name Syntax:

The following is an example of Endevor based rule definitions.

 LIST LONGNAME WHERE SHORTNAME = 'HEL00001' .
SLR Long �ame Syntax Example

List Long Name CIGPUNCH Example:

The following figure is an example of the output generated by the
LIST Long Name Request. The long name appears first with an
asterisk in column 1.

* HELLO STEVE
LIST LONGNAME WHERE SHORTNAME = HEL00001 .

List Long �ame Output

SLR in Endevor Processors

Endevor is not aware that the short name stored in its repository is
actually a long name somewhere else. From a programming object
perspective, the short name is a fully qualified member and normal
object being tracked and promoted. For customers who will be
using the Cloud 9 as a cold storage mechanism, meaning that no
additional processing will be done against the element or member
while on the host, then no additional processor or translator work is
required. As the short name is moved up the inventory maps, the
reference to the long name still exists in the SLR. When the user
lists against these from the Cloud 9 Browser interface, the long
names will appear.

Using C9LSLR with Endevor

As shown in the previous section of this chapter, the C9LSLR
utility is a standard utility that can be used in an Endevor
processor. It would primarily be used as a lookup service for
generating FTP statements or component lists. The information
returned from the lookup request needs to be parsed and processed
as per requirements.

Chapter 4: Exits, HTTPD
Security Issues, and
Customizations

There are two exit points in Cloud 9 that may need to be
the modified.

CLZREX00 – Cloud 9 Temporary Dataset Prefix Setting

CLZREX00 is a REXX CGI module that directs Cloud 9 as
the high level qualifier to use for temporary datasets. If
you do not modify this member, then the default is the
userid. The figure below shows the default CLZREX00
delivered on the installation cartridge and copied into the
USS directory /rootdir/cgi-bin/clzrex00. Please review this
source and modify if needed.

/* rexx --
 - Program: CLZREX00 -
 - Purpose: This program will return a dataset prefix. -
 - The prefix can be 1-16 characters long. -
 - For example: ABC.STEVE -
 - -
 - input parameter: userid -
 - return value...: prefix -
 - -
 --- */
 parse arg uid

/* Example: */
/* uid = 'CLOUD9.'uid */

return uid
/* --- */

 CLZREX00 Sample Exit

CLZREXIT – C1UXSITE Support

CLZREXIT is the rexx exec for C1UXSITE, multiple C1DEFLTS
switching. Please review this exit for customization. The sample
exit can be found in the CGI-BIN directory of your Cloud 9
rootdir.

/* rexx --
 - Program: CLZREXIT -
 - Purpose: This is the exit driver program. -
 - -
 - Exit 1: Is ENUXSITE to be called? -
 - return '' do not call ENUXSITE -
 - return 'YES' call ENUXSITE -
 - return 'YES,DDNAME,DSNAME' call ENUXSITE and allocate -
 - ddname/dsname before call -
 - -
 - Exit 2: Is CIGINI loader to be called? -
 - return '' do not call CIGINI loader -
 - return 'PGM' call specified program -
 - return 'PGM,DDNAME,DSNAME' call specified program and -
 - pass ddname/dsname to -
 - specified program. -
 - -
 --- */
 parse arg xitno
 select
 when (xitno == '1') then buffer = Exit01()
 when (xitno == '2') then buffer = Exit02()
 end

return buffer

/* --- */
/* *** C1DEFLTS table switching *** */
/* ENUXSITE gets called when requesting a list of environments */
/* or calling Endevor to perform an action. */
/* --- */
Exit01:
 /* - */
 /* Example: Do not call ENUXSITE. */
 /* - */
 buf = ''

 /* - */
 /* Example: Invoke ENUXSITE, but do not allocate a ddname. */
 /* - */
 /* buf = 'YES' */

 /* - */
 /* Example: If the user is P390Z then invoke ENUXSITE and */
 /* allocate the specified ddname/dataset name prior */
 /* to invoking ENUXSITE. */
 /* - */
 /* if (userid() == 'P390Z') then */
 /* buf = 'YES,CIGDD01,CIGT.STEVE.LOADLIBX' */

return buf

/* --- */
/* *** CIGINI switching *** */
/* This logic is used if the FastLIST database is used to get a */
/* list of systems, subsystems, types, or processor groups. It is */
/* also used when the FastLISt database is used to get a list of */
/* elements. */

/* --- */
Exit02:
 /* Example: Do not switch CIGINI files. */
 buf = ''

 /* Example of calling exit program called CIGXSAMP */
 /* buf = 'CIGXSAMP' */

 /* Example of calling exit program called CIGXSAMP */
 /* and have the following dd statement allocated. */
 /* //CIGDD01 DD DSN=CIGT.STEVE.LOADLIB,DISP=SHR */
 /* buf = 'CIGXSAMP,CIGDD01,CIGT.STEVE.LOADLIB' */

return buf

CLZREXIT – C1UXSITE Support

A compliment to switching C1DEFLTS would be switching
CIGINI files. The CIGXSAMP program can be found in the
JCLLIB offloaded during installation.

Alternate ADDTYPE Definitions Location

Due to security constraints, some customers need to store the
ADDTYPE definitions in a file other than the standard
HTTPD.CONF file. The ADDTYPE definitions are the only
reason that Cloud 9 directly reads the HTTPD.CONF during
processing. There are two options for those customers that wish
to use an alternate ADDTYPE definition. The first option is in a
USS directory, the second option is a OS/390 file.

The pointer to the alternate location is stored in the
HTTPD.ENVVARS file and the syntax is as follows:

OS/390 file:

C9_ADDTYPE_FILE=dataset(member)

USS file:

C9_ADDTYPE_FILE=rootdir/addtypes

This parameter is included as a line in the HTTPD.ENVVARS
files as follows:

PATH=/bin:.:/usr/sbin:/usr/lpp/internet/bin:/usr/lpp/internet/sbin:/usr/lp
p/ldap
SHELL=/bin/sh
TZ=EST5EDT

LANG=C
LC_ALL=en_US.IBM-1047
NLSPATH=/usr/lib/nls/msg/%L/%N:/usr/lpp/internet/%L/%N:/usr/lpp/ldap/lib/n
ls/msg
LIBPATH=/usr/lpp/internet/bin:/usr/lpp/internet/sbin:/usr/lpp/ldap/lib:<JA
VA_HOM
JAVA_HOME=<JAVA_HOME>
CLASSPATH=.:/usr/lpp/internet/server_root/CAServlet:<JAVA_HOME>/lib/classe
s.zip
STEPLIB=CURRENT
SERVER_ROOT=/u/p8887/
C9_ADDTYPE_FILE=CIGT.CONNIE.HTM(ADDTYPES)

E�VVARS example with alternate ADDTYPE

During a download or add to the host, the Cloud 9 will check to
see if there is an C9_ADDTYPE_FILE statement included in the
ENVVARS file. If there is not, then Cloud 9 reads the
HTTPD.CONF file to search out the ADDTYPE statements. If
there is a C9_ADDTYPE_FILE statement, then Cloud 9 attempts
to access and read the file. If Cloud 9 can not find or read the file,
it will make a second attempt against the ADDTYPEs in the
original HTTPD.CONF file.

LSERV SUPPORT

For users with LSERV, it is necessary to tell Cloud 9 that LSERV
has control over the Endevor VSAM files. This is done through
the LSERV SUBSYSTEM parameter in the CIGINI file. If
LESRV is active, the user must code the LSERV SUBSYSTEM as
in the example below.

DEFINE COMMON SECTION
 PRODUCT LOADLIB = 'FLHQ1.FLHQ2.LOADLIB'
* PRODUCT LOADLIB = 'FLHQ1.FLHQ2.AUTHLIB'
 WORK UNIT = TDISK
 VIO UNIT = TDISK
 DO NOT ALLOW ALTERNATE CIGINI FILE
 ENDEVOR CONLIB DSNAME = 'QUAL1.QUAL2.CONLIB'
 JAVASERVERCONTROL DSNAME = 'FLHQ1.FLHQ2.JAVALIB'
 LSERV SUBSYSTEM = SSN$SYSA

LSERV Example in CIGI�I

The LSERV subsystem must start with the four characters SSN$
and the full eight character name must be equal to the expected
ddname allocated in the Endevor JCL or interactive processing.
Cloud 9 will allocate the ddname for foreground actions and will
include the ddname in the batch JCL.

Appendix A - Type Definition
Worksheet
Type Language Defined to

Endevor

Defined

to Cloud

9 SLR

Case

Sensitive

Yes/6o

Binary

Yes/6o

Lrecl Recfm

Java Java No VB

Jar Jar Yes VB

Html Ebiztext No VB

Graphics Ebixjbin Yes VB

Type Definition Matrix

Appendix B - Application
Life Cycle Worksheet
Application Life Cycle Requirements

The following worksheet can be used to help determine the needs of each object
type at each location in the life cycle. This worksheet can then be used to fully
scope out the application implementation.

Host Type Host

Life
Cycle
Location

Version Control Production
Lock Down

FTP
Deploy

USS
Builds

Remote
Builds
*
custom
scripts
req’ed

Life
Cycle
Prom-
otion

.java Dev Yes Yes

.clas Dev Yes Yes

.html Dev Yes Yes Yes Yes

 Application Life Cycle Worksheet

Appendix C - FTP
Deployment Worksheet
The following is a table to be used for collecting proposed target platforms, types
being FTP’ed, userid/password for those platforms, and the type of FTP server on
the target platform. The table is filled in with the default values found in the
REXX script delivered with the translator.

Platform

Type

Type

Deployed

Group

Location

Deployed

Ip-address/port Userid/

Password

Target

Directory

Target

Directories

Defined?

Yes/6o

Target

Security

Yes/6o

FTP

server

type at

target

ISP – NT HTML TEST 999.999.999.99/
21

Userid/pass /isp/userdir Yes No Yes

Your
Platform
Here

FTP Worksheet for Deploy and Build Target Locations

$APINDX, 4, 30
Breeze Exits, 28
Breeze Job Card, 28

Breeze Job Ownership
Considerations, 29

Case Sensitive, 33

32 •••• Cloud 9 for Endevor Administration Guide

CLZREX00 – Cloud 9
Temporary Dataset Prefix
Setting, 24

Define Breeze Approvers, 6
Email, 2, 4, 30

FTP server, 35
HTML, 30, 31
Ip-address, 35
Language is FTP1, 33
Platform Type, 35

